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orientations B pour une orientation A. Toutefois le 
groupe d'espace (P3) auquel nous sommes conduit ne 
permet pas de d~crire compl&ement la structure qui 
doit &re regardre comme une antiphase p~riodique 
orientationnelle se produisant dans la phase ordonn~e 
de basse temperature (P21/c). Les fronti~res d'anti- 
phase moyennes n'rtant jamais strictement perpen- 
diculaires ~ la direction d'antiphase, les fronti~res 
rrelles ne peuvent plus &re considrrres comme planes, 
ce qui pourrait se v~rifier exp~rimentalement en 
microscopie fi haute r~solution. Ces irr~gularit~s de 
fronti+res qui sont fi l'origine de la rupture de 
p~riodicitb suivant c hexagonal (Fig. 4) pourraient 
avoir un caract+re dynamique. Des mesures de dif- 
fusion inrlastique de neutrons ont +t+ entreprises pour 
essayer de prrciser ce point. Quoi qu'il en soit, il restera 

s'interroger sur les conditions d'apparition de telles 
structures, aucune explication ne pouvant &re avancre 

l'heure actuelle. 
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Abstract 

A number of theories are examined for their predictions 
of extinction coefficients at large values of extinction, 
especially as applied to polarization ratios. Although 
several theories give the behavior expected on the basis 
of physical reasoning (a polarization ratio approaching 
unity), the popular theories of Zachariasen [Acta Cryst. 
(1967), 23, 558-564] and Becker & Coppens [Acta 
Cryst. (1964), A30, 129-147, 148-153] do not show 
the correct asymptotic behavior. Although this short- 
coming may be of no consequence in ordinary 
crystallographic applications, it is misleading in predict- 
ing the correct polarization factor to be used in 
connection with a crystal-monochromated apparatus, 
where the monochromator is usually adjusted to 
maximize its extinction. The importance of measuring, 
rather than estimating, the polarization ratio of a 
crystal monochromator is therefore re-emphasized. 

1. Introduction 

Crystallographers and others who make use of X-ray 
(or neutron) diffraction for practical problems require 
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working formulas to relate measured intensities to 
structure factors. These formulas contain some para- 
meters which are known a priori, some measured 
parameters and, typically, other parameters which are 
determined by a least-squares fit. One of the para- 
meters is the polarization ratio of the X-ray beam, the 
ratio of the power with polarization in the plane of 
diffraction to that with perpendicular polarization. 
Another parameter, or set of parameters, characterizes 
the physical state of the sample; these are the 
extinction parameters. Because of the importance of 
these parameters in an accurate assessment of the data, 
there has been a fair amount of research in recent years 
into the appropriate use of extinction parameters. 
Unfortunately there has not been equal attention paid 
to the use of correct polarization ratios in the case of 
crystal monochromated radiation. As a matter of fact, 
the application of complete extinction theory to the 
properties of crystal monochromators shows that the 
expected value of the polarization ratio in a crystal- 
monochromatized experiment is far from the value 
usually quoted and must almost always be considered a 
parameter which is not known a priori. The purpose of 
this paper is to document that statement and to show 
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Table 1. Nomenclature  

Wavelength and Bragg angle are denoted by 2 and 0. The other 
symbols used are defined in connection with the indicated equations. 

A (18) Q (12) y (6) p (3) 
E (39) Q' (34) Ys (21) a (19) 
K (1) R (1) 6 (4) r (16) 
Kp (3) S (17) e (2) q~ (19) 
K~ (4) t (29) ~ (29) oJ (13) 

u 

m (8) T (24) r/ (23) If (1) 
P (19) x (24) A (11) l (1) 

X (25) U (11) 

some qualitative shortcomings of the most used 
extinction theories. 

Before getting involved with equations and cal- 
culations, it is well to consider a physical picture of the 
situation. 'Extinction' is used to describe a condition in 
which the incident beam is significantly reduced by 
diffraction processes. The concept may be made 
quantitative through the extinction coefficient y, which 
is the factor by which the integrated reflection is 
reduced compared to the value for an ideally mosaic 
sample. (Table 1 gives a reference to the precise 
definition of each symbol.) In crystallography it is usual 
to endeavor to reduce the extinction in the sample as 
much as possible, making y as near unity as possible. 
The reason for this is that it is then easiest to get a valid 
relationship between measured intensities and structure 
factors. This does not mean, however, that all aspects 
of a well designed diffraction experiment are free of 
extinction. In particular, if a crystal monochromator is 
used, it is advantageous that it diffract the desired 
radiation as strongly as possible. That is to say, it is 
desirable (in many cases) to design a monochromator 
to give the maximum possible extinction. 

This extinction has a profound effect on the 
polarization ratio of a crystal monochromated beam. 
Consider an unpolarized beam incident on an ideally 
mosaic (i.e. extinction free) monochromator. In this 
case the polarization ratio is m 2 ---- c o s  2 20 m, where 0 m is 
the Bragg angle of the monochromator. On the other 
hand, a well designed monochromator will display so 
much extinction that the desired rays of both 
polarizations are almost totally diffracted. The 
polarization ratio is thus approximately unity. This 
result has been known for some time (Jennings, 1968). 
It is, however, often overlooked in crystallographic 
applications. For example, in their widely quoted paper 
emphasizing the importance of extinction, Becker & 
Coppens (1974b) give explicit formulas which assume, 
without comment, that the crystal monochromator is 
extinction free. 

2. Statement of problem 

For the sake of concreteness, consider the diffraction 
geometry shown in Fig. 1. X-rays are generated at the 

anode a, are diffracted by the monochromator m and 
impinge on the sample s. Presumably measurements 
are made of the scattering from the sample, and the 
interpretation of these measurements requires, among 
other things, a knowledge of the polarization charac- 
teristics of the beam incident on the sample. We will 
estimate the range of possible polarization ratios of this 
beam by applying extinction theory to the mono- 
chromator, a study which will also elucidate the 
extinction theories themselves. 

The polarization ratio K is defined with respect to the 
plane of diffraction of the sample scattering: K is the 
ratio of the power with polarization in this plane (11) to 
that with perpendicular polarization (_L). Let us write 
down, schematically, how K might be calculated. 

K (~,,v/ms,rs) 

f B,, (2,ra, v/am)R ,, ( ~,, v/am,rm, v/ms) dra d V/am drm 
= (1) 

f B ± (2,r,,, v/am)R ± ( 2 ,  v/am,rm, v/ms) dra d v/am drm " 

Here B is the brightness, per unit wavelength interval, 
for each position r a of anode surface and over the solid 
angle V/am, which denotes both the axial (vertical) and 
equatorial (horizontal) divergence. The reflectivity of 
the monochromator is R and the integrals are taken for 
an element of sample area r s and for a particular 
monochromator to sample angle V/ms" 

The idea of writing down (1) is not so much to 
evaluate it, but to emphasize the enormous complexity 
of the polarization ratio. Its value must therefore 
almost always be measured if moderate accuracy is 
required. However, in the not unusual case that the 
plane of diffraction is fixed in advance, that the 
divergences are not too large, and that the polarization 
ratio is sufficiently uniform over the area occupied by 
the sample, the value may be taken to be a single value 
K characteristic of the apparatus. It is unfortunate that 
this single number is not more often quoted or is 
couched in more complicated terms. For a diffracted- 
beam monochromator, the polarization ratio is more 
dependent on beam divergences and angle and is less 
likely to be adequately described by a constant. 

Although it is usually not possible to calculate the 
polarization ratio K to high accuracy, it is very useful 
to know the range of possible values and perhaps to 
make an a priori  estimate of the expected value. For this 
purpose we can make some drastic simplifications in 

Fig. 1. The geometry referred to in equation (1). The anode, 
monochromator and sample are a, m and s. Two typical paths 
are indicated. 
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(1). Consider a small portion of the monochromator 
surface over which its properties may be assumed 
uniform. Neglect the effects of axial divergence and of 
wavelength distribution (presumably the interest is in a 
single spectral line). Assume further that it is adequate 
to consider the polarization ratio of the entire beam and 
that the source is uniform and unpolarized. Then (1) 
can be written 

fB(~)R,(c) dc 
K =  fB(e)Rl (e )  de" (2) 

Here e is the equatorial angle from a point on the 
monochromator to a point on the anode, conveniently 
measured from the peak of the reflectivity curve. To be 
even more definite, it is useful to consider two cases. At 
one extreme, the illuminated anode is so broad that 
B(e) has its (constant) value for all e for which R is 
appreciable. In this case, the numerator and denomi- 
nator in (2) are proportional to the integrated reflection 
p = f P  de for each polarization state. (Recall that here, 
and in most of the rest of the paper, we will be thinking 
of the monochromator as the 'sample', i.e. we will be 
applying extinction theory to the monochromator.) We 
may then write 

gp = P,,/Pt. (3) 

At the other extreme, the anode spot may be narrow 
compared to the rocking curve R(e), in which case B(e) 
is effectively a ~ function. Then 

K~(c) = R,,(e)/R ±(e). (4) 

K~ has been called a polarization coefficient by 
Olekhnovich & Markovich (1978). In a practical case, 
for maximum monochromated power, the situation is 
likely to be intermediate between the cases represented 
by (3) and (4). 

Even the very general equation (1) glosses over a 
number of important physical considerations. Many 
questions of coherence, discussed in the papers of Kato 
(1976a,b), Hart (1978) and Dmitrienko & Belyakov 
(1980), are ignored. One such question is the dis- 
tinction between the integrated reflection in (3) deter- 
mined by placing a fixed crystal in an incident spherical 
wave and that determined by rotating a crystal through 
an incident plane wave. The distinction is discussed by 
Kato (1976a) and Becker (1977b) and is of some 
importance in a number of experiments. For routine 
work with imperfect crystals it is generally assumed 
that the two evaluations of integrated reflection are 
effectively equal, and we shall use either one in 
connection with (3). 

In the case of nearly perfect crystals, the peak of the 
reflectivity curve may come at a slightly different angle 
for the II and the _1_ components. This difference, in 
principle, causes conceptual difficulties with the 
position of e -- 0 in (4). The angle involved, however, is 

of the order of a second of arc and is not of 
consequence in practical applications. 

It is possible to set up situations where the 
polarization ratio is known or irrelevant. The use of 
polarizing monochromators is discussed by Hart & 
Rodrigues (1979), Hart (1978), Mitra & Samantaray 
(1975), Chandrasekhar, Ramaseshan & Singh (1969), 
Olekhnovich (1969b) and Olekhnovich & Markovich 
(1978). 

The formula for the polarization factor to be applied 
to the sample reflection has been given in many places 
(e.g. Mathieson, 1978; Staun Olsen, Buras, Jensen, 
Alstrup, Gerward & Selsmark, 1978; Olekhnovich, 
1969a; Azaroff, 1955). I fK  1 is the polarization ratio of 
the incident beam (referred to its principal axes), K2 the 
polarization ratio of the sample (referred to its principal 
axes) and Z a rotation angle defined in the references, 
then the polarization factor is given by 

[ cos2 Z + KI sin 2 Z + K2( sin2 Z + K~ cos 2 ,~)]/(1 + K1). 

(5) 

It is immediately clear that this expression is inde- 
pendent of K~ for Z = 45 o, and in this case gives the 
same result as obtains for an unpolarized beam. [It 
should be cautioned that the beam is not actually 
unpolarized and that (5) is not complete in case 
coherence effects are important; cf. Hart (1978); 
Annaka, Suzuki & Onoue (1980). Some authors prefer 
a coherent separation, e.g. Alcock (1974).] Although it 
has been suggested that apparatus be constructed with 
Z = 45 o (Mathieson, 1978; Staun Olsen et al., 1978), 
most workers have preferred the simpler arrangements 
with Z = 0 or 90 o. The former, with the two diffraction 
planes parallel, is referred to as 'normal geometry' by 
Kerr & Ashmore (1974) and is the case we will use for 
illustration. Thus we will consider the situation with K -- 
g p  

3. Extinction theory 

Our objective is to make estimates of K based on (3) 
and (4) and on available extinction theories. It is 
therefore useful to add to and summarize the review of 
Becker (1977a), giving the most recent papers where 
references to earlier work are listed. There have been 
several attempts at alternative formulation which have 
not, up to now, led to practical equations (Balibar & 
Malgrange, 1975; Kuriyama, 1975). Some calculations 
have been carried through to practical form, but have 
stated limitations on sample perfection, sample form, 
etc., e.g. Sears (1977), Olekhnovich & Olekhnovich 
(1978, 1980), Werner (1974), Wilkins (1980), Boeuf, 
Lagomarsino, Mazkedian, Melone, Puliti & Rustichelli 
(1978) and Brown & Fatemi (1974). There are also 
limitations on the formulation of Kato (1976a, 1976b, 
1979, 1980), but, since this work uses a distinctive 
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sample model and is also carried through to practical 
equations, it deserves special mention. Extinction 
theory has also been examined by authors whose 
primary interest was the elimination of extinction, e.g. 
Seiler & Dunitz (1978) and Schneider, Hansen & 
Kretschmer (1981). 

In spite of all this work, the formulations preferred 
by far by crystallographers are those of Zachariasen 
(1967) and of others who use a similar rationale. As we 
shall see, this preference is probably based more on the 
fact that these results are in a form immediately 
applicable to least-squares programs than to a cor- 
rectness of the physical models (Zachariasen, 1969). 

To illustrate this remark, we may use the extinction 
coefficients 

y± = p±/pid, (6a) 

y ,f = p,,/p,Ja, (6b) 

whence, from (3), the polarization ratio is 

Kp = m 2 y,,/y ± (7) 

with 

m -- I cos 201. (8) 

Here pia is the integrated reflection for an ideal mosaic 
and 0 is the Bragg angle for the monochromator (again 
being considered as the sample). Zachariasen's theory 
gives the extinction coefficients directly yielding 

y± = (1 + 2 X z )  -1/2, (9) 

Kp = m2[(1 + 2Xz)/(1 + 2 m 2 X z ) l  u2, (10) 

where X z is a sample parameter which is independent 
of polarization. It is most instructive to depict Kp as a 
function of y± on a logarithmic plot as is shown in Fig. 
2. Although most of the variation in Kp is in a relatively 
small range of y±, the Zachariasen theory gives a 
monotone variation from Kp = m 2 characteristic of an 
ideal mosaic to Kp = m characteristic of an ideally 
perfect, small absorption, crystal. This behavior has 
been tacitly assumed by many workers, but the 
physical reasoning given in the Introduction,  as well as 
experiment, shows that it is incorrect. 

It is thus advisable to investigate the predictions of 
other models. To simplify the discussion, consider the 
case of a thick sample in symmetrical Bragg reflection 
and make use of the approximation that the imaginary 
part of the scattering factor is negligible compared to 
the real part. The material parameters are then the 
absorption coefficient # and the extinction length 

A± = (2r 0 N F )  -1, (11) 

where N F  is the structure factor per unit volume and r o 
is the classical electron radius. The usual crystal- 
lographic quantity is given by 

Q± = 2 / (A  2 sin 20), (12) 

and the integral breadth of the Darwin reflection curve 
is 

co I = 82/(3zcA l sin 20). (13) 

The corresponding values for II polarization are 
obtained by replacing F with mF. In the rest of the 
paper we will usually omit the subscripts, implying that 
the relations hold for the II and I cases separately. 

Kato (1980) has given explicit extinction formulas 
for a one-parameter model. Particularizing to our 
illustrative case, we find that his results yield 

y± = S ( X x ) / X  ~ (14) 

Kp = S ( m  2 X r ) / S ( X K )  (15) 

X K =  2r /#A z (16) 

S ( X ) =  2X/[1 + X + (1 + 2X)1/2]. (17) 

The physical state of the sample is completely 
characterized by the correlation length r. The Kato 
model does not make a needless distinction between 
primary and secondary extinction and, furthermore, as 
can be seen from Fig. 2, much more nearly explains the 
observed range of polarization ratio. 

rr/2 

\ 

I Zachariasen--Sphere ~ 

2 Lorentzian--Bragg I . "~ 

3 Lorentzian--Laue 

4 Gaussian--Bragg 

5 Kato--Bragg 

6 Gaussian--Laue 

7 Small Extinction--Eq. (32) 

8 Kato--Laue 

9 Small Extinction--Eq. (30) 

I 
0-01 0.1 

y~ or ¢(x~) 

Fig. 2. Dependence of the polarization ratio Kp on the extinction 
coefficient y± on a logarithmic scale with parameters appropriate 
to graphite 002 at Cu Ka. Zachariasen = theory of Zachariasen 
(1967). Kato = theory of Kato (1980). Bragg = symmetrical 
reflection geometry. Laue = symmetrical transmission geometry. 
Lorentzian = secondary extinction only, without diffraction 
broadening, with mosaic distribution [ 1 + (z~e/r/)2]-L Gaussian = 
same, except for distribution exp(-zce2/r/2). The vertical arrow 
shows the range of reported experimental K values (Hope, 1971; 
Vincent & Flack, 1980; Bardhan & Cohen, 1976), all plotted at a 
y± value measured in our laboratory for a typical graphite 
monochromator. The Kato curves also give the dependence of K6 
on ~0(x±) in the modified Darwin theory, neglecting primary 
extinction. The small extinction curves also apply either to Kp or 
K6 as discussed in the text. All curves except that of Zachariasen 
go asymptotically to unity on the left of the figure; however, the 
theories are not applicable for y± less than about 0.02. These 
remarks also apply to the curves (not shown) for spheres or 
cylinders. 
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In spite of its advantages, the Kato model is 
incomplete. It does not address polarization coefficients 
and requires that r be small compared to A. It may also 
not have the flexibility to represent the average 
behavior of non-uniform samples as well as do other 
(no more correct) theories. It is therefore useful to 
consider yet additional models, for which we first give 
some general background. 

4. Secondary extinction 

Almost all theories except that of Kato distinguish 
between primary and secondary extinction. The former 
refers to effects which depend explicitly on A, the latter 
to cases where any A dependence is implicit or lacking. 
In the event that primary extinction and diffraction 
broadening of the beam may be neglected, it is possible 
to solve (perhaps numerically) the transfer equations 
(Hamilton, 1957; Werner, Arrott, King & Kendrick, 
1966). The solution is conveniently given in two stages. 
Firstly, consider a collimated beam from which the 
sample area S O intercepts a power P0. Anticipating the 
application to large extinction, we find it is convenient 
to use the transmission factor in the form 

A = f exp [-~t(t 1 + t2)] d V / S  o. (18) 

Then we define 

(0(o) = P / ( P o A e ) =  P/Pk, (19) 

where o is the macroscopic scattering cross section per 
unit volume, P is the actual diffracted power and Pk is 
the extinction-free value. Within the assumptions the 
polarization coefficient may be written 

K s = o, ~0(o,,)/[o± ~0(oz)]. (20) 

The polarization ratio (equations 6 and 7) may be given 
in terms of the secondary extinction coefficient 

y s = Q  -1 f aq)(e) de, (21) 

where we have used the result that in the absence of 
primary extinction 

f o d e =  a. (22) 

Furthermore, it is convenient to characterize the 
function a(e) through its (extinction free) integral 
breadth r/so that 

a ( e =  o) = a/rl. (23) 

We also use the parameters 

x = aT  (24) 

and 

X =  Xma x = QT/rl, ( 2 5 )  

with T = - (dA/dlu) /A,  the average path length. Then, 

to first order, q) = 1 - x + ... and the polarization ratio 
is determined through the relation X~, = m2X±. 

It is useful to give a few examples to clarify the 
correct asymptoti_c behavior of ~0. For symmetrical 
Bragg reflection, T = 2A = l /a ,  independent of angle. 
The transfer equations (James, 1948; Zachariasen, 
1945) yield 

(on = 2/11 + x + (1 + 2x)1/2]. ( ~ )  
/ 

Although the function in (26) is essentially the same ~s 
that in (17), it should be borne in mind that the former 
applies to an integrated reflection and the latter to a 
reflectivity. For large x, where there is nearly tot~tl 
reflection in Bragg geometry, we have the asymptoti:c 
relation ~o n ~ 2/x, as could be determined directly from 
(19) since P/Po ~ 1. The values of y depend on the 
form of a(e). Choosing a simple rectangular function so 
that y = ~0 (Hamilton, 1957), we have for large X, y ~ 
2 / X  = 21art~Q, showing that the integrated reflection 
p = yQA is asymptotically equal to r/, independent of Q. 
The same results are approximately true for other 
mosaic distributions, though the asymptotic behavior 
for y would not be approached so rapidly as for ~0. 

The case of a cylinder of diameter Dc with its axis 
normal to the beam has been solved by Hamilton 
(1957, 1963), verifying the following results, which can 
also be obtained by physical reasoning. We illustrate 
this with the case of negligible absorption. Then A = 
rcDc/4 and T = 8Dc/3~z. For 2 0 =  180 ° we have Bragg 
geometry so the sample is totally reflecting for large x 
yielding ¢p~(180 °) ~ 1/o,4 = 32/3n a x. Because there is 
always a small portion of the cylinder that is not totally 
reflecting, the asymptotic condition is not achieved as 
rapidly as for the thick plate, but all the above 
discussion applies. For 20 = 0 °, at large x values the 
beam splits into equal forward diffracted and dif- 
fracted beams yielding ~0~(0 °) ~ 1/2aA = 16/377 x. 
For intermediate 20 values, the results are intermediate 
showing that the asymptotic integrated reflection (for 
the case y = ~0) lies between r /and r//2, depending on 
20, but independent of Q. 

The results for a sphere of diameter Ds can be 
obtained from those for a cylinder by breaking the 
sphere into a number of elementary cylinders and 
integrating. We have 

1 

(Os(aDs)=~f ~oc (aDc) (1 -~ )d~  (27) 
0 

aDc = aDs( 1 _ ~ 2 ) 1 / 2  (28) 

with a similar formula for y. In case absorption is 
negligible we have A = 2Ds/3 and T - - -  3Ds/4. 
Although the asymptotic values would be approached 
even less rapidly than in the case of a cylinder, all the 
remarks about large-x behavior still apply. 

These examples have been given to correct erroneous 
statements in the literature and to show that the 
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situation does not depend in a fundamental way on 
sample shape or diffraction angle. It is simplest to 
consider cases for which ~0 depends only on x and for 
which y depends only on X. The functional dependence 
of the results is emphasized by calculating the 
polarization ratios as is shown in Fig. 2. The 
polarization coefficient for these secondary extinction 
examples, plotted against the natural parameter ~0(x±), 
happens to be identical to the Kato result for integrated 
reflection and is, of course, somewhat higher than the 
polarization ratio based on the same model. 

5. Small extinction formalism 

As is apparent from the Kato formulation, there is little 
need to distinguish primary from secondary extinction 
in case the extinction is small. This point had already 
been made by Chandrasekhar (1956), who realized 
that, to first order, all extinction theories yield 

y = 1 - ~Q + . . . ,  (29) 

where ~ is a parameter of the order of T/r/ for 
secondary extinction and of the order t2/2 for primary 
extinction, with t being the path length within a 
coherent domain, ff may depend somewhat on sample 
shape, diffracting angle, details of mosaic distribution, 
etc., but not on polarization. Taking cognizance of the 
relation Q,, = m 2 Ql,  it is easy to show that 

K29-=mEy,,/y_L=m 2 [m 2 + (1--m2)/y±], (30) 

where the subscript indicates the assumption of (29). 
This result is plotted in Fig. 2. It is seen that the 
behavior near y± = 1 is correct, but that (30) cannot 
obtain for smaller y±. However, to the order carried, we 
could as well replace (29) with 

y =  1/(1 + CQ) + . . . ,  (31) 

in which case we obtain 

K31 -----= m2/[m 2 + (1 -- m2)y_L], (32) 

which gives results comparable to those of Kato or of 
the secondary extinction calculations. 

This entire formalism obtains equally well for q~ 
instead of y. So the small extinction plots of Fig. 2 can 
also be considered as the expansion of K a as a function 
of~0(xl). 

6. More complete formulations 

The formulations discussed so far have limitations on 
their applicability. For example, the Kato theory is 
restricted to moderate correlation lengths and to 
divergent beams; the secondary extinction calculations 
assume negligible diffraction broadening; etc. Further- 

more, these theories use a single parameter (at least in 
so far as polarization is concerned) to characterize the 
physical state of the sample. Actual samples may be 
much more complicated. Most of the ideas which have 
been used to deal with these complications can be 
included in a modified Darwin theory, which we now 
outline. 

One considers a small region of ideally perfect 
material. The solution of the diffraction equations for 
such perfect platelets has been known for years 
(Zachariasen, 1945; James, 1948). If we neglect the 
distinction between the Ewald and the Darwin solution, 
the integrated reflection for Bragg geometry is 

p =  Q' t (33) 

with 

Q' = Q tanh (t/A)/(t/A). (34) 

For Laue geometry, Pendell6sung effects lead to an 
oscillatory dependence of p on t/A, but the average 
behavior may be approximated adequately for the 
present purposes by an ad hoc function such as 

Q ' =  (Q/2)ttanh (t/A)/(t/A) + exp(-t2/3A2)l,  (35) 

which is chosen to have the correct initial behavior and 
also agrees with the result that beam splitting causes 
the large t asymptote to be only ½ that of the Bragg case 
(as is also true for secondary extinction). The solution 
for small perfect cylinders (Olekhnovich & 
Olekhnovich, 1980) is similar to the Bragg case at high 
angle and shows muted Pendelldsung at low angle. 
Thus (34) and (35) approximate the limiting behavior 
for Q', with the former favored at high 20 and the latter 
at low 20. Turning one's attention to the macroscopic 
sample, one then assumes that T is large compared to t 
and that the beam divergence is large compared to o) 
and thus that primary extinction can be corrected by 
replacing Q by Q' in (23) for the cross section, and 
elsewhere, as in (25). 

The assumption of small diffracting regions implies 
particle-size broadening. Such broadening was well 
known to the early workers who explicitly did not 
consider cases where it is important. More recently 
(Kuznetsov, 1962; Zachariasen, 1967; Becker & 
Coppens, 1974a,b) it has become the custom to 
convolute this broadening with the true mosaic spread, 
though no justification for this procedure has been 
given and it has been severely criticized by Werner 
(1974). It seems to us that the convolution would be 
approximately valid for cases where extinction arises 
primarily from a single diffraction event, but would 
underestimate the broadening when many orders of 
multiple scattering occur. In any case, some estimate is 
usually better than none, so one assumes a particle size 
broadening 22/t sin 20. If the true mosaic spread has a 
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breadth %, we may indicate the value to be used in (23) 
by 

rl = % • (22/t  sin 20), (36) 

where t h e ,  represents a combination appropriate to the 
assumed convolution function, for example, adding the 
two terms in quadrature. 

Lastly, one may consider the range of validity of the 
formula implied by all this reasoning, 

Po = O' Ays(Q'  T/q). (37) 

This result is plausible so long as t < T and r />  co. In 
other cases there would be the implication that fewer 
than one mosaic block is contributing to the dif- 
fraction, a clear contradiction. So, for Bragg geometry, 
we can write an ad hoe formula to ensure that p never 
goes below its value co for a single ideally perfect 
crystal: 

p~___. (p2 -k- (./)2) 1/2. ( 38 )  

For the transmission case, 09 would be replaced by o9/2. 
Implementation of (38) depends on the choice of t, r/, 

the form of the convoluted broadening function, and of 
the macroscopic extinction function Ys. Because real 
crystals so rarely have a smooth, uniform mosaic 
character (Schneider, 1977; Lehman & Schneider, 
1977; Schneider, Hansen & Kretschmer, 1981), there 
seems little point in being fastidious about these 
choices. However, we believe that calculations, based on 
some possible, though perhaps unrealistic, model are 
useful in indicating the qualitative features of the 
results. Fig. 3 shows the range of K values obtained by 
assuming a Gaussian broadening function, ys based on 
(26), and Q' of (34). The lower part of the range is 
determined by primary extinction and the upper part  is 
a combination of primary and secondary extinction. 
The left-hand portion shows the approach to ideally 
perfect single-crystal behavior at a value of y = E, 
where E is the ratio of the kinematic to the dynamical  
integrated reflection, given by 

E =  16 pA/3zc. (39) 

To be more specific, Fig. 3 also shows curves based on 
a 'dislocation model' (Olekhnovich & Markovich, 
1978) of a reasonable behavior for a real material. For 
this model we chose % = 22/t  sin z 0, yielding a single 
parameter curve. 

Fig. 3 also indicates the increased range encom- 
passed by replacing (34) with (35) and/or  (26) with 
~0~ = [1 - exp ( - 2 x ) ] / 2 x  appropriate to symmetrical 
transmission. In addition, the effect of assuming a 
Lorentziarl distribution is shown in Fig. 3. The 
decreased proportion of the sample showing strong 
extinction is evident, but the limiting behavior corres- 
ponds to the physical discussion given previously. 

7. Experimental situation 

There have been numerous proposals to use the 
polarization ratio to characterize crystal perfection, to 
assist in accurate determination of extinction-free 
structure factors, and to characterize diffraction ap- 
paratus. By contrast, very few data are available; even 
recent papers whose sole purpose is to characterize a 
monochromator  have failed to give its polarization 
ratio. We have therefore only indicated the range of 
published values for graphite at Cu Ka in Fig. 2; in no 
case was the corresponding integrated reflection 
reported. 

Although they have not explicitly discussed polari- 
zation ratios, the Harwell group have made a number 
of investigations of heavily extinguished reflections (e.g. 
Cooper & Rouse, 1970, 1976; Sakata,  Cooper, Rouse 
& Willis, 1978). These workers have developed 
expressions which meet the requirements of (29) and 

] 
I I 

K~ 

K 

/11 

,,,~ I I 
0.01 0-I 

y~ or (Q'I/Q±)~o(X'~) 

Fig. 3. The range of polarization ratios Kp (shown by the vertical 
hatched region) allowed by the modified Darwin calculation for 
graphite at Cu Ka (m = 0.894) in symmetrical reflection 
geometry with a Gaussian mosaic distribution. Note that the 
theory allows a very wide range where the values are greater than 
m = I cos 201, but converges on the left side of the figure to the 
correct value m at y± = E±. The solid curve shows the values of 
Kp predicted for a sample following the 'dislocation model'. The 
right-hand and upper horizontal hatched region shows that the 
deviation from ideally mosaic behavior is even more pronounced 
for transmission geometry with respect to primary and/or 
secondary extinction. The left-hand horizontal hatched region 
shows that the assumption of a Lorentzian mosaic distribution 
does not qualitatively change the behavior, though it does 
increase the fraction of the reflection curve for which extinction 
effects are not severe. The results also do not depend strongly on 
m for m > ½ (Jennings, 1968). The upper curve is Ka vs 
(Q'/Q)(o(Q'/21arl) for the dislocation model in symmetrical 
reflection. The factor Q'/Q is required so that the reference 
condition is one that is free of both primary and secondary 
extinction. The ad hoe assumptions made do not apply as well to 
Ka as to Kp, and the curve for the former does not necessarily 
give a good representation of the situation where both the 11 and 
_1_ reflectivities can approach unity for an (unrealistically) well 
collimated beam incident on an ideally perfect sample. 
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are an adequate representation of experimental data on 
several materials (but graphite was not examined). 
Thus the plot of Kp (Fig. 4) based on these expressions 
may be considered as experimental results for the 
region in which they obtain, say to the right of the 
maximum of each curve. Although the Cooper-Rouse 
formulas do lead to K values greater than m, it is clear 
that they would not explain the very high K values for 
graphite indicated in Fig. 2, especially considering that, 
other things being equal, Bragg geometry shows less 
severe extinction effects than the nearly Laue geometry 
of a sphere or cylinder at low angle. 

Although a few isolated measurements of K with the 
corresponding values of y± have been reported, the only 
extensive work known to us is that of the Minsk group 
(Olekhnovich, Rubtsov & Schmidt, 1975; Olekhnovich 
& Schmidt, 1976; Olekhnovich & Markovich, 1978). 
Unfortunately, they examined only semiconducting 
materials for which the enhancement 1 /E  is far less 
than for graphite. For the materials studied, Oleknovich 
et al. found the empirical relationships 

y± = (B + E±)/(1 + B) (40) 

and 

y,, = (bB + E,,)/(1 + bB), (41) 

where B is a parameter characterizing the state of the 
sample and b is a constant for any one reflection. If 
relations (40) and (41) obtain up to y = 1, then the 
value of b is determined by (30) or (32) and the 
polarization ratio can be plotted for the whole range of 
y as is done in Fig. 4. In actual fact, the experiments of 

Olekhnovich et al. only extended up to y _~ ½ and they 
found the best fit for somewhat different values of b. 
Thus the curve in Fig. 4 should be considered as only 
indictive of the type of results obtained by Olekhnovich 
et al. 

Experiments with polarized neutrons are very 
instructive because large values of extinction may be 
attainable. The complete formulation is more com- 
plicated than in the X-ray case, but, if spin flips are 
neglected, the equations become identical• However, 
the significance of m is different from that in the X-ray 
case and the usual purpose of the experiment is to 
measure m. Thus, in contrast to the situation with 
X-ray monochromators, extinction is usually avoided. 
For example, Chakravarthy & Madhav Rao (1980) 
and Van Laar, Maniawski & Kaprzyk (1979)were able 
to interpret their polarized neutron experiments on the 
the basis of the Zachariasen model, which is completely 
unsatisfactory for large extinction• 

The work of Bonnet, Delapalme, Becker & Fuess 
(1976) analyzes earlier polarized neutron data with the 
explicit purpose of testing extinction hypotheses and 
does include discussion of large extinction cases. The 
results fall well within the hatched region of Fig. 3, as is 
shown in Fig. 4, and it is possible to choose parameters 
to give a good fit to the data, though the smallest yz 
value detailed was 0- 34. In addition an observation of K 
as large as m °'53 is reported, but the corresponding y 
value is not given. Bonnet et al. (1976) discuss this 
matter within the framework of the Becker & Coppens 
theory, but we believe this discussion to be erroneous as 
will be detailed below. 

In 

l / l  2 

0.01 0.1 1 

Y± 

Fig. 4. Polarization ratios based on various formulas as applied to 
graphite 002. The two formulas of Cooper & Rouse (1970, 1976) 
(C&R) make a good fit to various moderately extinguished 
neutron diffraction data and would be expected to apply to 
graphite in an appropriate range. The formula of Olekhnovich et 
al. (1975) was not meant to apply near y± _~ 1, and the graph is 
only indicative, as discussed in the text. The points are from the 
polarized neutron work discussed by Bonnet et al. (1976); they 
refer to a variety ofm values and crystal parameters. 

8. Critique of theories 

Nelmes (1980) has pointed out that it is not necessary 
to require the models used in customary extinction 
theories to be physically realistic. Rather, these models 
may be used to evaluate results which are at least 
possible and which may (approximately) apply to the 
more complicated situation in real crystals. Measure- 
ments of polarization ratio are particularly revealing of 
such applicability because all parameters but Q remain 
constant. In fact, the dependence of y on strength of 
reflection can be derived from the quantity plotted in 
the figures: 

log K log y ( m  2 Q l ) - log y ( Q  ± ) 

log m 2 log m 2 

8 log y 

c3 log Q 

(42) 

For small extinction, relations (29) or (31) obtain 
and the important feature of an extinction model is its 
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prediction about the angular and sample-shape depen- 
dence of the coefficient ¢. The theory of Zachariasen 
(1967), which attributes primary extinction to a path t 
and secondary extinction to a path T -  t, yields (for a 
fixed ;I,) a simple one-parameter, angularly independent 
model. The theory of Olekhnovich, Markovich & 
Oleknovich (1980) gives a sin 20 dependence for ¢. 
Other theories may specify an intermediate angular 
dependence or may invoke additional parameters, 
allowing more complex behavior. Often, however, the 
data are not adequate to define such additional 
parameters, and only the limiting cases of ¢ indepen- 
dent of angle (type I) or ¢ proportional to sin 20 (type 
II) are considered. In any case, the most appropriate 
analysis of small extinction is still a matter of 
controversy which we will not discuss further. 

For large extinction, the Zachariasen theory cannot 
explain the observed polarization ratios, though many 
of the other theories presented, including that of Kato, 
do yield physically plausible results. The Becker & 
Coppens (B&C) theory requires more complete dis- 
cussion. In their original presentation, which gives the 
explicit formulas usually used, B&C (1974a,b) sug- 
gested an unconventional separation of primary and 
secondary extinction. This separation is clearly incor- 
rect for large extinction. Perhaps for this reason, B&C 
(1975) suggested using the conventional separation of 
(37). In any event, B&C use an analytic approxi- 
mation to the secondary extinction coefficient which is 
a good fit at low to moderate extinction and suggests an 
X -1/2 behavior at large extinction. Stephan & L6schau 
(1976a,b, 1978) have come to a similar conclusion. 
Such behavior would lead to a limiting polarization 
ratio of m 1/2, as accepted by Bonnet et al. (1976). 
However, the physical reasoning given above (or 
calculation) shows that for reasonable mosaic distri- 
butions the secondary extinction coefficient goes 
approximately as 1/7( for large X. Thus one can 
understand the failure of the B&C theory to explain the 
large extinction cases discussed by Hutton, Nelmes & 
Scheel (1981) or the polarization ratios of high- 
efficiency monochromators. 

It would go beyond the scope of this paper to discuss 
the theories in more detail. We will only note that the 
distinction among the various theories, in so far as 
crystallographic applications are concerned, is pri- 
marily in the moderate extinction region. It would seem 
that, even for the moderate extinction region, a theory 
such as the modified Darwin theory, making use of 
correct secondary extinction calculations, would be 
preferable, at least conceptually, to those theories 
which yield an incorrect large extinction result. Unfor- 
tunately, those theories which do yield correct limiting 
behavior have not been cast in a form convenient for a 
least-squares fit. It is presumably for this reason that 
t, he more approximate theories of Zachariasen and 
Becker & Coppens have been so widely used. In any 

case, it is extremely unlikely that any current theory 
will be more than a very rough approximation to the 
complex physical state of an actual monochromator or 
sample. 

9. Summary and recommendations 

A crystal monochromator designed to reflect a single 
X-ray spectral line as strongly as possible will show 
strong extinction. We have compared the available 
experimental results on polarization ratios of such 
monochromators with a large number of extinction 
theories, emphasizing qualitative and physical aspects. 
These comparisons show that some of the theories and 
the bulk of the experimental results are plausible at 
large extinction, yielding a limiting value near unity for 
the polarization ratio. The discussion shows that the 
popular theories of Zachariasen (1967) and Becker & 
Coppens (1974), although giving a good first and 
second approximation to the situation at low to 
moderate extinction, may not be extrapolated correctly 
to large extinction. 

Because of the complex physical state of a typical 
monochromator, it is unrealistic to attempt to calcu- 
late its polarization ratio on the basis of any of the 
theories; the purpose of the comparisons mentioned 
above is solely to give a qualitative picture of the 
situation. Therefore it is particularly important to 
measure the polarization ratio of any crystal mono- 
chromator as part of the routine of setting up a 
diffraction apparatus (if a correct polarization factor is 
required in the use of the apparatus). Furthermore, as a 
service to other diffractionists, I would urge that these 
measured values be communicated to me as a part of 
the IUCr survey of polarization ratios (International 
Union of Crystallography, 19 78). 

I thank David Chipman for discussion and 
encouragement and Richard Nelmes for 
correspondence. 
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